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ABSTRACT

Recent discoveries in smart technologies

have created a variety of aerodynamic

actuators which have great potential to

enable entirely new approaches to

aerospace vehicle flight control. For a

revolutionary concept such as a seamless

aircraft with no moving control surfaces,

there is a large set of candidate locations for

placing actuators, resulting in a substantially

larger number of combinations to examine in

order to find an optimum placement

satisfying the mission requirements. The

placement of actuators on a wing

determines the control effectiveness of the

airplane. One approach to placement

maximizes the moments about the pitch, roll,

and yaw axes, while minimizing the

coupling. Genetic algorithms have been

instrumental in achieving good solutions to

discrete optimization problems, such as the

actuator placement problem As a proof of

concept, a genetic algorithm has been

developed to find the minimum number of

actuators required to provide uncoupled
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pitch, roll, and yaw control for a simplified,

untapered, unswept wing model. To find the

optimum placement by searching all

possible combinations would require 1,100

hours. Formulating the problem as a multi-

objective problem and modifying it to take

advantage of the parallel processing

capabilities of a multi-processor computer,

reduces the optimization time to 22 hours.

INTRODUCTION

Conventional control devices like flaps and

ailerons have gaps between the wing and

the control surface that contribute to leakage

and protuberance drag. This can be a

source of aerodynamic noise and increased

observability. Recent discoveries in material

science have been used to create a variety

of aerodynamic actuators which have great

potential to enable entirely new approaches

to aerospace vehicle flight control. Recent

research has examined the feasibility of

applying active structures technology to

modify and control aircraft aerodynamics. _

One option, synthetic jet actuators,

potentially allows a seamless aircraft with no

moving control surfaces, but rather

hundreds of small ports (Figure 1) capable

of aerodynamically morphing the shape of

the wing as needed. The cost and

complexity of such a vehicle is obviously

affected by the number and location of these

ports. Given this possibility, tools and
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techniques must be developed to optimally

select and distribute such devices over the

aircraft surface.

Synthetic Jet }Actuators

Figure 1. Seamless aircraft with synthetic jet actuators for control.

The placement of the actuators on a

wing determines the control effectiveness of

the airplane. For the wings-leveler autopilot,

optimal placement means maximizing the

moments about the pitch, roll, and yaw axes

while minimizing the couplings among the

moments. 2 For a typical wing, there is a

large set of candidate locations for placing

actuators. The larger the set, the larger the

number of possible combinations to examine

in order to find an optimum subset to satisfy

the mission requirements and mission

constraints.

In the present work, PMARC, a low-

fidelity aerodynamic code for modeling

complex three-dimensional geometries, is

used to evaluate the pitch, roll, and yaw

moments of a wing model. 3 The variable

input for PMARC consists of an array

containing the actuator placement locations.

PMARC converts the moments about the

three axes into non-dimensional coefficients.

The moments include a length, therefore

they must be divided by a quantity with a

dimension of length as well as by the

dynamic pressure and wing area. The

length quantity is the mean aerodynamic

chord for the pitching moment and the wing

semispan for the rolling and yawing

moments. PMARC then returns these

values for use in later computations.

Before attempting to solve the more

complex problem with the seamless aircraft,

a simplified, untapered, unswept wing based

on the NACA 0015 airfoil with 16 potential

locations for actuators is used as the model

(Figure 2).
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Figure 2. Wing model with 16 potential locations for actuators (unwrapped analysis model left,

model right)

PMARC requires about two minutes for

the initial, preprocessing call (extra time for

setting up some matrices) and one minute

for each subsequent call on a single

processor Sun UltraSPARC TM* computer.

At this rate, the time required to evaluate all

possible combinations for placing the 16

actuators is about 1,100 hours of computer
time. If the number of actuators doubles

then this time increases to the millions of

hours. Clearly, new tools and techniques
are needed to reduce this time. The

application of a tool like a genetic algorithm

(GA) appears to be an excellent choice for

reducing the optimization time. GA's have

been instrumental in achieving good

solutions to discrete optimization problems,

such as the actuator placement problem,

that have not been satisfactorily solved by
other methods. 4 The discrete nature of the

actuator placement problem has been

recognized previously, and the GA approach

has been successfully applied to solve the

placement problem for interior noise

control) The approach in this study differs

in that the fitness of a population member is

determined by calling PMARC to evaluate a

multiobjective fitness function with several

constraints.

A GA is very amenable to parallel

processing. 6 After initial testing on the

single processor computer, the code was

ported to an SGI Origin 2000 TM multi-

processor computer to further reduce the

time required to find the optimal set of
actuators.

The results from this project

demonstrate the effectiveness of applying a

GA, on both single processor and in parallel

on multi-processor computers, to optimize

the selection and placement of actuators for

an aircraft design problem.

THE GENETIC ALGORITHM

The use of trademarks or names of

manufacturers in this report is for accurate

reporting and does not constitute an official

endorsement, either expressed or implied, of

such products or manufacturers by the

National Aeronautics and Space
Administration.

This GA uses a direct representation of the

order as a coding of a wing with n actuator

locations. Each member of the population

consists of a string of numbers where each

position (1 through n) in the string contains a

one or a zero, designating whether the
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actuator exists or not. For example, the

member string

[01 1 01001 01 001 01 1]

represents a wing with 16 possible actuator

locations where actuators exist at locations

2, 3, 5, 8, 10, 13, 15, and 16. An initial

population of members is randomly

produced and evaluated. Successive

populations are produced by the GA

operations of selection, crossover, and

mutation.

The fitness of a member is determined

by counting the number of actuators in the

string. The fitness is penalized if any

constraints placed on the problem are

violated. The penalty is determined by

calling PMARC. The input for PMARC

remains constant except for the array

containing the actuator placements. The

pitch, roll, and yaw moments (output from

PMARC) are used in determining the

penalty, if any, of a member. PMARC is

called to evaluate each member of the

population, and there may be many

generations of populations.

The crossover operation is the

recombination of traits of the surviving

members that have been placed in the

mating pool, in the hope of producing a child

with better fitness levels than its parents.

This GA applies the single-point crossover

technique as opposed to the uniform

crossover method used by Simpson and

Hansen. _ Single-point crossover is

accomplished by randomly selecting two

parent members from the mating pool and

randomly selecting a crossover point (Figure

3). To create members for the next

generation population, each location in the

first parent member before and including the

crossover point is copied to the first child,

and each location after the crossover point

is copied to the second child. Then the

opposite locations from the second parent

are copied to each child.

Parent1[1111111111111111]

Parent 2 [00 O00 O0 O0 O00 O000]

Randomly select crossover point of 4

Child 1 [1 1 1 1000000000000]

Child 2 [0 O00111111111111]

The selection operation determines

those members of the population that

survive to participate in the production of

members of the next population. Selection

is based on the value of the fitness function

for the individual members. Members with

better fitness levels tend to survive and are

placed in the mating pool. Selection is

accomplished by the tournament approach

where two members are randomly selected

from the parent pool and compared

according to their fitness; the member with

the best fitness is included in the mating

pool.

4

Figure 3. Single point crossover example.

To prevent the crossing of like

members, called incest prevention in GA

terminology, each string is given a unique

identifier based on the power of two and the

number of ones in the string. 8 The

identifiers of each of the two members being

crossed over are compared and if they have

the same identifier, then the crossover does

not take place.

The mutation operation prevents the

search of the design space from becoming

too narrow. After the production of a child
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population, mutation randomizes small parts

of the resulting members, with a very low

probability that any given member location

will be affected. Mutation is accomplished

by polling each location in the member. A

random number generator, along with a

user-defined mutation parameter (default is

.01 which means mutation occurs 1 time out

of every 100 polls), is used to determine if

that location is to be mutated. Only the

default rate is used for this project. If

mutation occurs and there is a one in the

location, it is made a zero (Figure 4), and

vJce versa.

String before mutation

[1111111111111111]

Randomly select mutation point of 6

String after mutation

[1111101111111111]

Figure 4. Mutation example.

MULTI-OBJECTIVE FUNCTION

The problem statement for the application of

a GA to actuator placement is, "Given 16

actuator locations, find the minimum number

of actuators required to provide uncoupled

pitch, roll, and yaw moments." The problem

is divided into three distinct subproblems:

uncoupled pitch, uncoupled roll, and

uncoupled yaw. Each subproblem consists

of a separate population and a separate

fitness function creating a multi-objective

function problem. The fitness function for

each subproblem finds the minimum number

of actuators required for that particular

uncoupled maneuver. There are five

constraints for each subproblem and each

penalizes the fitness function when a

violation occurs. For example, the

constraints for the pitch subproblem are:

(1) penalize if the absolute value of the roll

moment is greater than .001

(2) penalize if the absolute value of the yaw

moment is greater than .001

(3) penalize if the number of actuators is less

than 2

(4) penalize if the PMARC code does not

converge

(5) penalize if the absolute value of the pitch

moment is less than .001

Constraints (1) and (2) ensure that the

maneuver is uncoupled. Constraint (3)

allows engineers to specify a minimum

number of actuators for safety reasons.

Constraint (4) takes advantage of

convergence information from the PMARC

convergence parameter. Constraint (5)

ensures that there is a minimum moment for

each subproblem.

The ultimate goal is to find a set of

actuators which can provide 3-axis control.

To this end, there is also a composite fitness

function determined from the members of

the three subproblems which have satisfied

constraints. The strings of the three

individual maneuvers are combined with an

"OR" function to form a composite

configuration that indicates the actuators

needed to perform each of the three

uncoupled maneuvers. The composite

fitness is the sum of the actuators in the

composite configuration (Figure 5).
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Pitch 0001010001000001

Fitness 4

Roll 0000001111000000

Fitness 4

Yaw 0000000001101001

Fitness 4

Composite 0001011111101001

Fitness 9

Figure 5. Composite configuration and

fitness.

Examining the composite fitness one

member at a time proved to be inefficient.

For example, in one pass through the

population, the two members selected for

pitch and yaw each had an excellent fitness

of 4, however, the one selected for roll had a

poor fitness of 10. This resulted in a

composite fitness of 16. Another pass found

members with the following fitnesses: pitch

= 10, roll = 4, yaw = 10, and composite = 18.

If the pitch and yaw strings from the first

pass were combined with the roll string from

the second pass, then the composite fitness

would be 9. Thus, arrays were added to

save members of each subproblem that do

not violate any constraints, and all possible

good combinations of strings from the

subproblems can now be evaluated to find

the best combination for composite fitness.

This is an expanded form of the elitist

method which places only the best string

from the previous population into the mating

pool.9

Another change was made so that calls

to PMARC would not be wasted. In the

original program for example, if a call was

made to PMARC for the pitch subproblem,

no check was made to see if the results

would be valid for either of the other

subproblems. A change was made to the

program so that regardless of the

subproblem, the data from PMARC is now

checked to see if its results do not violate

constraints in any of the subproblems.

APPLICATION ON A SINGLE

PROCESSOR COMPUTER

The population size for this application

is 100 and there are different populations for

pitch, roll, and yaw. The GA iterates through

the 100 members of each subproblem, and

evaluates the fitness of each individual

member (300 function evaluations per

generation).

Because absolute values are used in

the subproblem fitness evaluations, the GA

does not distinguish between pitch up or

pitch down, roll left or roll right, and yaw left

or yaw right. In this application, after 13

generations (about 65 hours of computer

time) the GA finds pitch up (Figure. 6a), roll

right (Figure. 6b), and yaw right (Figure. 6c).
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Figure 6. Actuator placement for uncoupled maneuvers.

The composite configuration places

actuators at locations 3, 4, 13, 14, and 16 for

the three uncoupled maneuvers. The wing

model is symmetric, and this information is

used to determine a composite configuration

for all six uncoupled maneuvers (Figure 7).

'151191
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7 11 15

Figure 7. Composite actuator placement for 3 and 6 uncoupled maneuvers

These results show that the GA is a

useful tool for reducing the time required to

determine the optimum placement of

actuators for a simplified, untapered,

unswept wing based on the NACA 0015

airfoil. This proof-of-concept was needed

before attempting to solve a more complex

problem such as the seamless aircraft

shown in Figure 1. However, before moving

to the complex model, the program was

ported to a multi-processor computer in a

further attempt to reduce the time.

THE PARALLEL GENETIC ALGORITHM

The program was then modified to

execute in parallel on four processors of an

?

SGI Origin 2000 TM multi-processor

computer. Each of the three subproblems

executed on a different processor and one

processor was devoted as a master

processor sending data (an array containing

the actuator locations) to and receiving data

(pitch, roll, and yaw moments) from the

subprobiems. The code for the GA

operations (selection, crossover, and

mutation) remained unchanged.

APPLICATION ON A MULTI-PROCESSOR

COMPUTER

After a call is made to each subproblem

processor for initialization purposes, the

subproblem processors are only called to
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execute PMARCin parallel. For this
application,parallelismpotentiallyresultsin
a decreaseinoptimizationtimebya factor
of three to about 22 hours for 13
generations.However,this idealspeedup
wasnotachieveddueto thelimitationof a
maximumof 8 wall clockhoursfor single
programexecutionplacedon thisparticular
parallel system. This resulted in the
execution of only one generation at a time;

and the program had to be restarted for the

next generation. Finally, because of the

randomness of the GA, no direct

comparison could be made to the time

required to find the optimum placement on

the single processor computer.

In this application, the parallel GA finds

pitch down (Figure. 8a), roll right (Figure.

8b), and yaw right (Figure. 8c). Although the

configuration is slightly different than the one

for the single processor, the composite

fitness is the same.
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Figure 8. Actuator placement for three uncoupled maneuvers.

The composite configuration places

actuators at locations 3, 5, 9, 12, and 14 for

the three uncoupled maneuvers. The wing

model is symmetric, and this information is

used to determine a composite configuration

for all six uncoupled maneuvers (Figure 9)
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Figure 9. Composite actuator placement for 3 and 6 uncoupled maneuvers.

With the successful implementation of

the parallel version of the GA, the time for

finding the optimum placement for the

simplified, untapered, unswept wing model

with 16 actuators has been reduced from

1,100 hours for an exhaustive search to

about 22 hours. Because the GA is easily

scalable to more complex problems, the tool

appears to be an excellent choice to apply to

the placement of actuators for the seamless

aircraft.
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CONCLUSIONS

The purpose of this project is to determine if

a genetic algorithm can reduce the amount

of computer time required to find the

optimum placement of actuators for a

simplified, untapered, unswept wing. This

wing model has 16 potential locations for

actuators The fitness of a member is

determined by counting the number of

actuators in the string. The fitness is

penalized if any constraints placed on the

problem are violated. A low-fidelity

aerodynamic code is used to determine the

penalty, if any. If this program were to be

applied to all possible combinations of 16

actuators, it would require about 1,100 hours

of computer time. The first application of a

genetic algorithm to this model executes on

a single processor computer and contains a

multiobjective function which finds the

minimum number of actuators required to

provide uncoupled pitch, roll, and yaw

control. The problem is divided into three

distinct subproblems, each with its own

population, fitness function, and constraints.

A composite fitness function finds the

minimum number of actuators (at least two)

required to accomplish three uncoupled

maneuvers. Wing symmetry is used to

determine a composite configuration for all

six uncoupled maneuvers. This application

requires about 65 hours of computer time.

The second application of the genetic

algorithm executes on a multi-processor

computer and uses four processors to find

the optimum placement. One processor is

used as a master and the other three solve

the subproblems. The parallel application

results in a further reduction to about 22

hours of computer time to find the optimum

placement, which is about 2% of the time

required for an exhaustive search of all

possible combinations.
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